Collagen membrane wrapping around methotrexate-containing calcium-phosphate cement reduces the side effects on soft tissue healing

Objectives: This study aims to evaluate whether the collagen membrane (membrane) wrapping around the methotrexate (MTX)-containing calcium-phosphate cement (CPC) reduces the side effects on soft tissue healing.

Material and methods: In 36 rats, femoral bone defects were created and treated in six groups which were CPC only, CPC and membrane wrapping around, CPC containing 2% MTX, CPC containing 2% MTX and membrane wrapping around, CPC containing 5% MTX, CPC containing 5% MTX and membrane wrapping around.

Results: Histological examinations revealed a statistically significantly improved healing in the connective tissue samples of the CPC containing 5% MTX group wrapped around by membrane compared to those without membrane (p=0.04). However, this was not seen in other groups.

Conclusion: Membrane wrapping around the CPC containing MTX reduces the side effect of MTX on cellular proliferation at its highest concentration, particularly. Membrane wrapping may allow administration of higher doses of an anti-neoplastic drug which can be more effective.

Keywords: Animal model; calcium-phosphate cement; collagen membrane; methotrexate; soft tissue healing.

Chemotherapy plays an important role in eradicating malignant bone tumors and bone metastasis. Although several anti-neoplastic drugs can be intravenously administered, systemic deliveries of these drugs exert many side effects on other organs. The management includes the removal of macroscopic involvement and internal fixation after curettage of the tumor (if needed), followed by chemotherapy and/or radiation. However, this is not always sufficient for local disease control. Therefore...
a high concentration of an anti-cancer drug locally would be desirable.[1]

Calcium-phosphate cement (CPC) can be used as a carrier to deliver these agents locally and can be effectively directed to affect neoplastic cells. Calcium-phosphate cements have a large potential as drug carriers due to their high specific surface area.[2,3] The effectiveness of CPC containing methotrexate (MTX) has been studied before.[4] Burst release of drug from CPC cause adverse local and systemic side effects, when the anti-neoplastic drug is used in high amounts or concentrations.[5] Hence, we hypothesized that collagen membrane (membrane) wrapping around a chemotherapeutic agent incorporated CPC can prevent local side effects on soft tissue healing.

MATERIAL AND METHODS

In this study, 36 Wistar rats aged 8-12 weeks weighing 200-250 grams were used. The study was approved by the local ethics committee.

Animals were maintained in controlled conditions (at 22 °C temperature, 12 hours of daily light and 12 hours dark). Xylazine hydrochloride (10 mg/kg) and ketamine HCl (60-100 mg/kg) in combination were given intraperitoneally. The mean duration of anesthesia was approximately one hour. Prophylactic antibiotic therapy was not used during or after the operation. No wound infections were encountered.

Norian SRS (Skeletal Repair System®; Synthes, Switzerland) is probably the most widely documented CPC.[6-8] Fifty grams of CPC were mixed with methotrexate 100 and 250 mg (DBL Methotrexate® Injectable Solution 50 mg/2 ml, Orna Pharmaceutical, Turkey) solutions, respectively. Finally 2% and 5% mixtures of MTX CPC were obtained. The Membrane (BoneProtect Membrane®, Dentegris GmbH, Duisburg, Germany) used in this study was provided in sterile packs of 30x40 mm in size. The appropriate sizes were cut under sterile conditions before application.

Thirty-six rats were divided into six groups. In all groups, mid-shaft osteotomies of the femur were performed, fixed with intramedullary Kirschner wires (K-wires), and created gaps were re-filled with CPC. The only differences between groups were the incorporation of MTX with or without the membrane wrapping around. According to this: first group; only CPC (control group), second group; CPC and membrane wrapping around, third group; CPC containing 2% MTX, fourth group; CPC containing 2% MTX and membrane wrapping around, fifth group; CPC containing 5% MTX and sixth group; CPC containing 5% MTX and membrane wrapping around were created.

After anesthesia was given; a 2 cm lateral incision was made to the right thigh and the femoral shaft was exposed through the vastus lateralis muscle. After the periosteum was incised, a transverse femoral osteotomy was made with an osteotome, and approximately 5 mm gap was created. The osteotomy was fixed with a 1.2 mm K-wire inserted through the greater trochanter. The tip of the K-wire was bent over the greater trochanter and left under the skin. The membranes were cut in appropriate sizes with sufficient overlapping and soaked with sterile 0.9% saline solution before wrapping around the osteotomy line. As the collagen became wet, it collapsed and adhered to what it covers.[9] As a result, no fixation method was required for the membrane (Figure 1).

In each group, two rats were sacrificed at three, seven and 14 days after administration of a high-dose anesthetic and the right femurs were disarticulated from the hip and knee joints. The specimens were processed and sectioned and stained with Harris Hematoxylin-Eosine solution (Sigma-Aldrich Co., St. Louis, MO, USA). Inflammatory cells were counted in the muscle and subcutaneous connective tissue sections randomly assigned 20 fields for each rat. The mean counts were recorded (x20 magnification).

According to day of sacrifice, three day groups also established for the connective and the muscle tissue seperately.

Figure 1. The application of calcium-phosphate cement with or without methotrexate and membrane wrapping around. (a) The transverse femoral osteotomy space was created. (b) The osteotomy line was filled with calcium-phosphate cement with or without methotrexate. (c) Appropriately cut membrane was placed for wrapping and, (d) the procedure was completed.
The results were analyzed statistically with non-parametric Wilcoxon signed ranks and NPAR tests. A 95% confidence level was selected to define significance for all statistical tests.

RESULTS

There were no significant differences in the cell counts of connective tissue and muscle tissues among the groups. However, the cell density in the connective tissue was greater than that of muscle tissue which was statistically significant in all groups (p<0.05) (Figure 2 and 3). In the comparison of the groups with and without membrane, there were statistically significant differences in the connective tissue of the 5% MTX added groups (group 5 and 6). (p=0.04) (Table 1). It suggests that the membrane wrapping around the MTX added CPC may reduce the expected adverse effect of MTX on cellular proliferation at the highest concentration, particularly.

The animals were sacrificed at three, seven, and 14 days, there were three groups for both connective tissue and muscle tissue each containing 12 animals. The average number of cells in the connective and muscle tissue is shown in Table 2. When the results
Collagen membrane wrapping around methotrexate-containing calcium-phosphate cement reduces the side effects on soft tissue healing

were analyzed, the only statistically significant difference was a significant reduction in the cell count at the 14th day compared to the third and the seventh days in the connective and muscle tissue (p=0.05 and p=0.002 respectively). The results led us consider that it was a normal physiological process, as the tissue healing subsided at 14 days.

DISCUSSION

Filling the defects with bone cement supports the bones during fracture healing.[10] The bone filling materials also offers an opportunity to administer the drug treatment locally, thus, improving effectiveness and toleration of high-dose chemotherapy.[11] Chemotherapeutic agents used in adjuvant tumor treatment are known to exert effects on rapidly proliferating cells, and a delaying influence by such agents on wound, and fracture healing may therefore be expected.[12]

It has been recently suggested that adding chemotherapeutic drugs to Poly(methyl methacrylate) (PMMA) which may improve the local control of skeletal neoplasms by exerting a direct cytotoxic effect on residual cancer cells.[13] Particularly, incorporation of chemotherapeutic agents such as MTX to bone cement has been reported and the diffusion of the drug from the implanted cement has been demonstrated both in vitro and in vivo.[14] It has been reported that incorporation of different chemotherapeutic drugs (such as methotrexate, doxorubicin and cisplatinum) to PMMA were able to exert a cytotoxic effect in vitro models of human breast cancer cells. It has been also demonstrated that MTX is the drug showing the slowest release with a more prolonged toxic effect over time, thereby, confirming its suitability for this type of application.[15]

Several studies reported the addition of methotrexate to bone fillers, usually PMMA bone cement.[16,17] However, PMMA could only create a burst release. Furthermore the temperatures involved in the polymerization exceeded 60 °C, which was harmful for the surrounding tissues potentially, in poor healers such as treated cancer patients, in particular. Calcium-phosphate cements on the other hand are biocompatible and are well used for bone filling applications.[18] Due to their chemical and crystalline affinity to bone tissue, CPC can be resorbed and replaced with bone tissue in vivo.[19] Therefore, we selected a local drug delivery model by using CPC as a carrier for chemotherapeutic agent and MTX as chemotherapeutic agent.

The MTX-CPC local drug delivery system on bone healing has been studied before. It has been found that MTX has not significantly altered the cement setting time and the compressive and tensile strengths of the MTX containing CPC. It has been also shown that MTX release was with a burst effect in the initial stage and a sudden drop thereafter. It has been estimated that the incorporated MTX could be continuously released over two to four months at a higher than minimum concentration.[4]

The sustained release of chemotherapeutic drugs at a local site may reduce systemic side effects, however, not free from other side effects. The local administration of anti-cancer drugs may induce severe damage to the surrounding tissue including the skin. In a rabbit model, it was shown that MTX release from the implantation site inhibited osteogenesis in the initial period; this inhibition weakened with time, and no difference was observed between CPC and MTX-CPC at six months of follow-up. The MTX had no apparent toxicity on the host rabbits, even at the highest dose tested.[20] The maximum MTX concentration used was 1%, which is quite less than our results (5%). Although much more local side effects were expected in our study, we did not encounter such events.

TABLE I

<table>
<thead>
<tr>
<th>Groups</th>
<th>Connective tissue</th>
<th>Muscle tissue</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Mean±SD</td>
<td>Mean±SD</td>
</tr>
<tr>
<td>CPC</td>
<td>43.42±7.83</td>
<td>33.13±6.88</td>
</tr>
<tr>
<td>CPC + membrane</td>
<td>41.85±14.41</td>
<td>26.43±5.19</td>
</tr>
<tr>
<td>CPC + 2% MTX</td>
<td>40.77±14.50</td>
<td>29.75±8.21</td>
</tr>
<tr>
<td>CPC + 2% MTX + membrane</td>
<td>50.47±7.02</td>
<td>34.59±3.86</td>
</tr>
<tr>
<td>CPC + 5% MTX</td>
<td>40.40±11.47</td>
<td>27.30±2.86</td>
</tr>
<tr>
<td>CPC + 5% MTX + membrane</td>
<td>55.02±10.70</td>
<td>31.08±3.89</td>
</tr>
</tbody>
</table>

TABLE II

<table>
<thead>
<tr>
<th>Groups</th>
<th>Connective tissue</th>
<th>Muscle tissue</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Mean±SD</td>
<td>Mean±SD</td>
</tr>
<tr>
<td>Third day</td>
<td>45.9±13.18</td>
<td>31.7±5.99</td>
</tr>
<tr>
<td>Seventh day</td>
<td>50.87±12.22</td>
<td>33.23±4.87</td>
</tr>
<tr>
<td>Fourteenth day</td>
<td>39.18±7.25</td>
<td>25.7±3.64</td>
</tr>
</tbody>
</table>

SD: Standard deviation; CPC: Calcium-phosphate cement; MTX: Methotrexate.
The experimental and clinical researches on CPC were associated with an increased risk of blood clotting. A most likely explanation is that clotting is provoked by interfacial reactions between solid particles and blood. Therefore, the release of calcium phosphate particles from the cement into the blood stream should be prevented and/or controlled.

This collagen based membrane are mechanically malleable, adaptable, and easy to manipulate, which thought to be beneficial in our experimental application for further controlling drug release from CPC and the release of calcium phosphate particles into the blood. The other advantageous properties of collagen include hemostatic function, facilitating early wound stabilization, semipermeability, allowing nutrient passage, natural enzymatic degradation, and chemotactic ability to attract fibroblasts.

Furthermore, the unique character of the collagen matrix provides five major advantages: (i) partial open porosity for quick release of the drug after implantation into the tissue, (ii) partial close porosity for “secondary” release of the drug enclosed within pores, (iii) “tertiary” release of the drug partially immobilized within the fibrillar collagen structure, (iv) a three-dimensional structure which works as a ‘natural’ distance barrier between the drug incorporated into the sponge and the surrounding environment and (v) a network which enhances cell penetration and new tissue formation. In our experiment, it was hypothesized that the membrane could function as a storage carrier-like CPC- or a diffusion barrier. To the best of our knowledge, this is the first study in the literature investigating the comparative effects of CPC, MTX and membrane on soft tissue healing. As afore mentioned above, the effect of membrane wrapping was prominent in the connective tissue rather than the muscle tissue, particularly. The mean cell density and the protective effect of membrane was less in the muscle tissue. When tissues are disrupted following injury, connective tissue repair is needed to fill the defect and restore anatomic structure and function. Therefore, the protective effect of membrane was centered on the important part of the soft tissue healing.

In conclusion; MTX loaded CPC is a suitable material for the local control of bone tumors and for the filling the cavities after tumoral tissue removal. Collagen membrane wrapping around is an effective method to prevent local adverse effects of MTX release from the CPC with or without CPC’s blood clotting triggering action. Furthermore, an enhancement was noticed in the connective tissue at the highest MTX concentration (5%), particularly. Thus, collagen membrane wrapping may allow administration of higher doses of an anti-neoplastic drug which can be more effective. We believe that further researches are needed to conclude regarding the beneficial effects of collagen membrane wrapping.

Declaration of conflicting interests

The authors declared no conflicts of interest with respect to the authorship and/or publication of this article.

Funding

The authors received no financial support for the research and/or authorship of this article.

REFERENCES

Collagen membrane wrapping around methotrexate-containing calcium-phosphate cement reduces the side effects on soft tissue healing

